Estudo de anãs brancas “poluídas” descobre que as estrelas e os planetas crescem ao mesmo tempo

CIÊNCIA/ASTRONOMIA

Uma equipa de astrónomos descobriu que a formação planetária no nosso jovem Sistema Solar começou muito mais cedo do que se pensava anteriormente, com os blocos de construção dos planetas a crescerem ao mesmo tempo que a sua estrela-mãe.
Crédito: Amanda Smith

Uma equipa de astrónomos descobriu que a formação planetária no nosso jovem Sistema Solar começou muito mais cedo do que se pensava anteriormente, com os blocos de construção dos planetas a crescerem ao mesmo tempo que a sua estrela-mãe.

Um estudo de algumas das estrelas mais antigas do Universo sugere que os blocos de construção de planetas como Júpiter e Saturno começaram a formar-se enquanto uma estrela jovem está a crescer.

Pensava-se que os planetas só se formassem quando uma estrela atinge a sua dimensão final, mas novos resultados, publicados na revista Nature Astronomy, sugerem que as estrelas e os planetas “crescem” juntos.

A investigação, liderada pela Universidade de Cambridge, muda a nossa compreensão de como os sistemas planetários, incluindo o nosso próprio Sistema Solar, se formaram, potencialmente resolvendo um grande puzzle da astronomia.

“Temos uma boa ideia de como os planetas se formam, mas uma questão pendente que temos tido é quando eles se formam: a formação planetária começa cedo, quando a estrela-mãe ainda está a crescer, ou milhões de anos mais tarde?” disse a Dra. Amy Bonsor do Instituto de Astronomia de Cambridge, a primeira autora do estudo.

Para tentar responder a esta pergunta, Bonsor e colegas estudaram as atmosferas das estrelas anãs brancas – os antigos e ténues remanescentes de estrelas como o nosso Sol – para investigar os blocos de construção da formação planetária.

O estudo envolveu também investigadores da Universidade de Oxford, da Universidade de Munique, da Universidade de Groninga e do Instituto Max Planck para Investigação do Sistema Solar em Gotinga.

“Algumas anãs brancas são laboratórios espantosos, porque as suas atmosferas finas são quase como cemitérios celestes”, disse Bonsor.

Normalmente, os interiores dos planetas estão fora do alcance dos telescópios. Mas uma classe especial de anãs brancas – conhecidas como sistemas “poluídos” – têm elementos pesados como o magnésio, ferro e cálcio nas suas atmosferas normalmente limpas.

Estes elementos devem ter vindo de pequenos corpos como asteróides deixados para trás pela formação planetária, que chocaram contra as anãs brancas e arderam nas suas atmosferas.

Como resultado, as observações espectroscópicas de anãs brancas poluídas podem sondar os interiores desses asteróides dilacerados, dando aos astrónomos mais informações das condições em que se formaram.

Pensa-se que a formação planetária comece num disco protoplanetário – feito principalmente de hidrogénio, hélio e pequenas partículas de gelo e poeira – em órbita de uma estrela jovem.

De acordo com a teoria actual sobre como os planetas se formam, as partículas de poeira colam-se umas às outras, acabando por formar corpos sólidos cada vez maiores.

Alguns destes corpos maiores vão continuar a acretar material, tornando-se planetas, e alguns permanecem como asteróides, como os que colidiram com as anãs brancas no estudo actual.

Os investigadores analisaram observações espectroscópicas a partir das atmosferas de 200 anãs brancas poluídas em galáxias próximas. De acordo com a sua análise, a mistura de elementos observada nas atmosferas destas anãs brancas só pode ser explicada se muitos dos asteróides originais tivessem derretido, o que fez com que o ferro pesado se afundasse para o núcleo enquanto os elementos mais leves flutuavam à superfície.

Este processo, conhecido como diferenciação, foi o que levou a Terra a ter um núcleo rico em ferro.

“A causa do derretimento só pode ser atribuída a elementos radioactivos de vida muito curta, que existiram nas fases iniciais do sistema planetário, mas que se decompõem em apenas um milhão de anos”, disse Bonsor.

“Por outras palavras, se estes asteróides foram derretidos por algo que só existe durante muito pouco tempo, no início do sistema planetário, então o processo de formação planetária deve começar muito rapidamente”.

O estudo sugere que é provável que o quadro de formação precoce esteja correto, o que significa que Júpiter e Saturno tiveram muito tempo para crescer até aos seus tamanhos actuais.

“O nosso estudo complementa um consenso crescente no campo de que a formação planetária começou cedo, com os primeiros corpos a formarem-se em simultâneo com a estrela”, disse Bonsor. “As análises das anãs brancas poluídas dizem-nos que este processo de fusão radioactiva é um mecanismo potencialmente ubíquo que afecta a formação de todos os exoplanetas”.

“Isto é apenas o começo – de cada vez que encontramos uma nova anã branca, podemos reunir mais evidências e aprender mais sobre como os planetas se formam.

Podemos traçar elementos como o níquel e o crómio e dizer quão grande deve ter sido um asteróide quando estes formaram o seu núcleo de ferro. É espantoso que sejamos capazes de sondar processos como este em sistemas exoplanetários”.

Astronomia On-line
18 de Novembro de 2022



 

656: Novo estudo encontrou os detritos planetários mais antigos da nossa Galáxia

CIÊNCIA/ASTRONOMIA/FÍSICA

Impressão de artista das antigas anãs brancas, WDJ2147-4035 e WDJ1922+0233, rodeadas por detritos planetários em órbita, que são acretados nas estrelas e poluem as suas atmosferas. WDJ2147-4035 é extremamente vermelha e escura, enquanto que WDJ1922+0233 é invulgarmente azul.
Crédito: Universidade de Warwick/Dr. Mark Garlick

Astrónomos, liderados pela Universidade de Warwick, identificaram a estrela mais antiga na nossa Galáxia que está a acretar detritos de planetesimais em órbita, um dos mais antigos sistemas planetários rochosos e gelados descobertos na Via Láctea.

Os seus achados foram publicados na edição de 5 de Novembro da revista Monthly Notices of the Royal Astronomical Society, que concluem que uma ténue anã branca localizada a 90 anos-luz da Terra, bem como os remanescentes do seu sistema planetário em órbita, têm mais de 10 mil milhões de anos.

O destino da maioria das estrelas, incluindo aquelas como o nosso Sol, é tornarem-se uma anã branca. Uma anã branca é uma estrela que queimou todo o seu combustível e libertou as suas camadas exteriores e está agora a sofrer um processo de encolhimento e arrefecimento.

Durante este processo, quaisquer planetas em órbita serão perturbados e, em alguns casos, destruídos, restando os seus detritos que acretam para a superfície da anã branca.

Para este estudo, a equipa de astrónomos, liderada pela Universidade de Warwick, modelou duas anãs brancas invulgares que foram detectadas pelo observatório espacial Gaia da ESA.

Ambas as estrelas estão poluídas por detritos planetários, tendo uma delas sido encontrada com um tom invulgarmente azul, enquanto a outra é a mais ténue e vermelha encontrada até à data na nossa vizinhança galáctica – a equipa submeteu ambas a uma análise mais aprofundada.

Usando dados espectroscópicos e fotométricos do Gaia, do DES (Dark Energy Survey) e do instrumento X-Shooter no ESO para determinar há quanto tempo está a arrefecer, os astrónomos descobriram que a estrela “vermelha” WDJ2147-4035 tem cerca de 10,7 mil milhões de anos, dos quais 10,2 mil milhões foram passados a arrefecer como uma anã branca.

A espectroscopia envolve a análise da luz estelar em diferentes comprimentos de onda, que pode detectar quando os elementos da atmosfera da estrela estão a absorver luz a cores diferentes e ajuda a determinar quais são esses elementos e em que quantidade.

Ao analisar o espectro de WDJ2147-4035, a equipa encontrou a presença dos metais sódio, lítio, potássio e tentativamente carbono – fazendo desta a anã branca mais antiga, poluída por metais, descoberta até agora.

A segunda estrela “azul”, WDJ1922+0233, é apenas ligeiramente mais nova que WDJ2147-4035 e foi poluída por detritos planetários de composição semelhante à da crosta continental da Terra. A equipa científica concluiu que a cor azul de WDJ1922+0233, apesar da sua fria temperatura superficial, é provocada pela sua invulgar atmosfera mista de hélio-hidrogénio.

Os detritos encontrados na atmosfera de hélio quase puro e de alta gravidade da estrela vermelha WDJ2147-4035 são de um antigo sistema planetário que sobreviveu à evolução da estrela em anã branca, levando os astrónomos a concluir que este é o mais antigo sistema planetário em torno de uma anã branca descoberta na Via Láctea.

A autora principal Abbigail Elms, estudante de doutoramento no Departamento de Física da Universidade de Warwick, disse: “Estas estrelas poluídas por metais mostram que a Terra não é única, existem por aí outros sistemas planetários com corpos semelhantes à Terra.

97% de todas as estrelas tornar-se-ão anãs brancas e são tão omnipresentes no Universo que são muito importantes de compreender, especialmente estas extremamente frias.

Formadas a partir das estrelas mais antigas da nossa Galáxia, as anãs brancas frias fornecem informações sobre a formação e evolução dos sistemas planetários em torno das estrelas mais antigas da Via Láctea”.

“Estamos a encontrar os remanescentes estelares mais antigos da Via Láctea que foram poluídos por planetas outrora semelhantes à Terra. É espantoso pensar que isto aconteceu à escala de dez mil milhões de anos e que esses planetas morreram muito antes mesmo da Terra ter sido formada”.

Os astrónomos também podem utilizar os espectros da estrela para determinar a rapidez com que esses metais afundam no núcleo da estrela, o que lhes permite olhar para trás no tempo e determinar a abundância de cada um desses metais no corpo planetário original.

Ao comparar dessas abundâncias com corpos astronómicos e material planetário encontrado no nosso próprio Sistema Solar, podemos adivinhar como teriam sido esses planetas antes da estrela morrer e se tornar uma anã branca – mas no caso de WDJ2147-4035, isso provou ser um desafio.

Abbigail explica: “A estrela vermelha WDJ2147-4035 é um mistério, uma vez que os detritos planetários que acretou são muito ricos em lítio e potássio, ao contrário de qualquer objecto conhecido no nosso próprio Sistema Solar.

Esta é uma anã branca muito interessante, uma vez que a sua temperatura superficial ultra-fria, os metais que a poluem, a sua idade, e o facto de ser magnética, a tornam extremamente rara.

O professor Pier-Emmanuel Tremblay do Departamento de Física da Universidade de Warwick, disse: “Quando estas estrelas velhas se formaram, há mais de 10 mil milhões de anos, o Universo era menos rico em metais do que é agora, uma vez que os metais são formados em estrelas evoluídas e em explosões estelares gigantescas.

As duas anãs brancas observadas proporcionam uma janela excitante para a formação planetária num ambiente pobre em metais e rico em gás que era diferente das condições quando o Sistema Solar foi formado”.

Astronomia On-line
11 de Novembro de 2022



 

282: SNR 0519-69.0: acertando o relógio de uma explosão estelar

CIÊNCIA/ASTRONOMIA

Composição de SNR 0519 em raios-X, pelo Chandra, e no óptico pelo Hubble. Veja as imagens de raios-X a energias baixas (0,4-0,7 keV), médias (0,7-0,8 keV) e altas (3-6 keV); e somente a imagem óptica.
Crédito: raios-X – NASA/CXC/GSFC/B. J. Williams et al.; óptico – NASA/ESA/STScI

Embora os astrónomos tenham visto os destroços de muitas estrelas que explodiram na Via Láctea e galáxias próximas, é muitas vezes difícil de determinar a linha temporal do desaparecimento da estrela.

Ao estudar os espectaculares remanescentes de uma super-nova numa galáxia vizinha usando telescópios da NASA, uma equipa de astrónomos encontrou pistas suficientes para ajudar a voltar atrás no tempo.

O remanescente de super-nova chamado SNR 0519-69.0 (SNR 0519 para abreviar) são os escombros da explosão de uma estrela anã branca. Depois de atingir uma massa crítica, quer puxando matéria de uma estrela companheira, quer fundindo-se com outra anã branca, a estrela sofreu uma explosão termonuclear e foi destruída.

Os cientistas utilizam este tipo de super-nova, chamado Tipo Ia, para uma vasta gama de estudos científicos, desde estudos de explosões termo-nucleares até à medição de distâncias a galáxias ao longo de milhares de milhões de anos-luz.

SNR 0519 está localizada na Grande Nuvem de Magalhães, uma pequena galáxia a 160.000 anos-luz da Terra. Esta composição mostra dados de raios-X do Observatório Chandra da NASA e dados ópticos do Telescópio Espacial Hubble da NASA.

Os raios-X de SNR 0519 com energias baixas, médias e altas são vistos a verde, azul e roxo respectivamente, com algumas destas cores sobrepostas para parecerem brancas. Os dados ópticos mostram o perímetro do remanescente em vermelho e estrelas em torno do remanescente em branco.

Os astrónomos combinaram os dados do Chandra e do Hubble com dados do aposentado telescópio espacial Spitzer da NASA para determinar há quanto tempo a estrela em SNR 0519 explodiu e para aprender mais sobre o ambiente em que a super-nova ocorreu.

Estes dados proporcionam aos cientistas uma oportunidade de “rebobinar” o filme da evolução estelar que tem sido reproduzido desde então e descobrir quando é que começou.

Os investigadores compararam imagens do Hubble de 2010, 2011 e 2020 para medir as velocidades do material na onda de explosão, que varia entre cerca de 6 e 9 milhões de quilómetros por hora.

Se a velocidade estiver perto do limite superior dessas velocidades estimadas, os astrónomos determinaram que a luz da explosão teria chegado à Terra há cerca de 670 anos, durante a Guerra dos Cem Anos entre a Inglaterra e a França, ou no auge da dinastia Ming na China.

No entanto, é provável que o material tenha abrandado desde a explosão inicial e que a explosão tenha ocorrido mais recentemente do que há 670 anos. Os dados do Chandra e do Spitzer fornecem pistas de que este é o caso.

Os astrónomos descobriram que as regiões mais brilhantes do remanescente, em raios-X, são onde o material se move mais devagar, e nenhuma emissão de raios-X está associada ao material que se move mais depressa.

Estes resultados implicam que uma parte da onda de explosão embateu no gás denso à volta do remanescente, causando a sua desaceleração à medida que viajava. Os astrónomos podem utilizar observações adicionais com o Hubble para determinar com maior precisão o momento do desaparecimento da estrela.

Astronomia On-line
16 de Setembro de 2022