913: Artemis 1: Hoje é um dia especial, a nave Orion entra na órbita lunar (vídeo)

CIÊNCIA/TECNOLOGIA/NASA/LUA/ARTEMIS 1

A nave espacial Orion da missão Artemis 1 DA ASA chegará à órbita da Lua hoje, sexta-feira dia 25 de Novembro, e poderá assistir ao momento marcante ao vivo. O evento, que acontecerá pelas 21:52 hora de Lisboa, irá por à prova a cápsula, dado que o caminho até lá chegar é sinuoso.

Com mais esta etapa, a nave não tripulada atinge com sucesso o seu objectivo principal. A entrada em órbita será acompanhada da Terra e poderá assistir a tudo em directo. Veja como.

Artemis 1: Hoje será batido um novo recorde

Hoje, pelas 21:52 horas de Portugal continental, a Orion está programado para ligar o motor que irá atirar a nave espacial numa órbita retrógrada distante à volta da Lua.

A cápsula irá utilizar o Módulo de Serviço Europeu, projectado e implantado pela Agência Espacial Europeia (ESA), que realizará uma manobra com suporte da gravidade da Lua. É esse movimento que é chamado de “órbita retrógrada distante” (DRO).

Segundo informações a DRO levará Orion cerca de 64.000 quilómetros para além da lua no seu ponto mais distante. Ao percorrer este caminho, a cápsula estabelecerá um novo recorde, afastando-se mais da Terra do que qualquer outra nave espacial anterior de classificação humana.

A actual marca de 400.171 km é mantida pela missão Apollo 13 da NASA, que não se destinava a viajar tão longe. A Apollo 13 deu a volta à Lua em vez de aterrar no solo lunar, depois da explosão de um tanque de oxigénio no módulo de serviço da nave espacial.

Orion vai chegar, cumprimentar a Lua e vir embora

A Orion passará um pouco menos de uma semana na DRO. A cápsula deixará a órbita lunar com o impulso gerado após ligar o motor no dia 1 de Dezembro, depois começará a viagem para casa, para a Terra.

A nave chegará aqui no dia 11 de Dezembro com um mergulho no Oceano Pacífico ao largo da costa da Califórnia, se tudo correr como planeado.

A missão Artemis 1 de quase 26 dias foi concebida para testar a Orion e o enorme foguetão, o SLS (Sistema de Lançamento Espacial), que enviou a cápsula para o céu na semana passada, antes das missões planeadas da tripulação para a Lua.

O primeiro desses voos dos astronautas, Artemis 2, enviará a Orion à volta da Lua em 2024. A missão Artemis 3 vai então aterrar no solo lunar perto do Polo Sul da Lua em 2025 ou 2026. Seguir-se-ão outras missões de alunagem, à medida que a NASA constrói um posto de investigação da tripulação na região polar sul – um objectivo-chave do seu programa Artemis.

Veja aqui em directo a entrada da Orion na órbita retrógrada distante da Lua:

Pplware
Autor: Vítor M
25 Nov 2022



 

896: Webb revela, como nunca antes, uma atmosfera exoplanetária

CIÊNCIA/ASTRONOMIA

Impressão de artista do exoplaneta WASP-39 b e da sua estrela. O planeta tem uma atmosfera difusa de cor laranja-azulada com traços de nuvens longitudinais por baixo. O quarto esquerdo do planeta (o lado virado para a estrela) está iluminado, enquanto que o resto está na sombra. A estrela é branca-amarelada, sem características nítidas.
Crédito: NASA, ESA, CSA, J. Olmsted (STScI)

O Telescópio Espacial James Webb da NASA/ESA/CSA acabou de “marcar outro golo”: um retrato molecular e químico dos céus de um mundo distante.

Ao passo que o Webb e outros telescópios espaciais, incluindo o Telescópio Espacial Hubble da NASA/ESA, revelaram anteriormente ingredientes isolados da atmosfera quente deste planeta, as novas leituras fornecem um menu completo de átomos, moléculas e até mesmo sinais de química activa e nuvens.

Os últimos dados também fornecem pistas de como estas nuvens podem parecer quando vistas de perto: isoladas em vez de como um cobertor único e uniforme sobre o planeta.

O conjunto de instrumentos altamente sensíveis do telescópio analisou a atmosfera de WASP-39 b, um “Saturno quente” (um planeta tão massivo quanto Saturno, mas numa órbita mais íntima que a de Mercúrio em torno do Sol) em órbita de uma estrela a cerca de 700 anos-luz de distância.

Este exoplaneta do tamanho de Saturno foi um dos primeiros examinados pelo Telescópio Espacial James Webb da NASA/ESA/CSA quando iniciou operações científicas regulares. Os resultados entusiasmaram a comunidade científica exoplanetária.

Os instrumentos de sensibilidade requintada do Webb forneceram um perfil dos constituintes atmosféricos de WASP-39 b e identificaram uma pletora de conteúdos, incluindo água, dióxido de enxofre, monóxido de carbono, sódio e potássio.

As descobertas são um bom presságio da capacidade dos instrumentos do Webb em realizar a vasta gama de investigações exoplanetárias – investigações de planetas em torno de outras estrelas – esperada pela comunidade científica. Isto inclui a análise das atmosferas de planetas mais pequenos e rochosos, como os do sistema TRAPPIST-1.

“Observámos o exoplaneta com vários instrumentos que, em conjunto, cobrem uma ampla faixa do espectro infravermelho e uma panóplia de impressões digitais químicas inacessíveis antes do JWST”, disse Natalie Batalhas, astrónoma da Universidade da Califórnia, Santa Cruz, que contribuiu e ajudou a coordenar a nova investigação. “Dados como estes ‘mudam completamente o jogo'”.

Os achados foram detalhados num conjunto de cinco novos artigos científicos, três dos quais já foram divulgados pela imprensa científica e dois ainda estão em revisão.

Entre as revelações sem precedentes está a primeira detecção, numa atmosfera exoplanetária, de dióxido de enxofre, uma molécula produzida a partir de reacções químicas desencadeadas pela luz altamente energética da estrela hospedeira do planeta. Na Terra, a camada protectora de ozono, na atmosfera superior, é criada de forma semelhante.

“Esta é a primeira vez que vemos evidências concretas de fotoquímica – reacções químicas iniciadas pela luz estelar energética – em exoplanetas”, disse Shang-Min Tsai, investigador na Universidade de Oxford, Reino Unido, e autor principal do artigo que explica a origem do dióxido de enxofre na atmosfera de WASP-39 b.

“Vejo isto como uma perspectiva realmente promissora para, com esta missão, fazer avançar a nossa compreensão das atmosferas exoplanetárias”.

Isto levou a outro “primeiro”: a aplicação de modelos computacionais de fotoquímica, por parte dos cientistas, a dados que exigem que tal física seja totalmente explicada.

As melhorias resultantes na modelagem vão ajudar a construir o “know-how” tecnológico necessário para interpretar, no futuro, potenciais sinais de habitabilidade.

“Os planetas são esculpidos e transformados ao orbitarem no ‘banho de radiação’ da estrela hospedeira”, disse Batalha. “Na Terra, essas transformações permitem que a vida prospere”.

A proximidade do planeta à sua estrela-mãe – oito vezes mais perto do que Mercúrio está do Sol – também o torna um laboratório ideal para estudar os efeitos da radiação das estrelas hospedeiras nos exoplanetas.

Um melhor conhecimento da ligação estrela-planeta deverá trazer uma compreensão mais profunda de como estes processos afectam a diversidade dos planetas observados na Galáxia.

Outros constituintes atmosféricos detectados pelo telescópio Webb incluem sódio (Na), potássio (K) e vapor de água (H2O), confirmando observações telescópicas anteriores terrestres e espaciais, bem como a descoberta de impressões digitais da água, nestes comprimentos de onda mais longos, que nunca tinham sido vistos antes.

O Webb também viu dióxido de carbono (CO2) com maior resolução, fornecendo duas vezes mais dados do que os relatados nas suas observações anteriores.

Entretanto, o monóxido de carbono (CO) foi detectado, mas as assinaturas óbvias de metano (CH4) e sulfureto de hidrogénio (H2S) ficaram ausentes dos dados do Webb. Se presentes, estas moléculas existem a níveis muito baixos.

Para capturar este largo espectro da atmosfera de WASP-39 b, uma equipa internacional de centenas de cientistas analisou independentemente os dados de quatro modos dos instrumentos finamente calibrados do telescópio Webb.

“Tínhamos previsto o que [o telescópio] nos mostraria, mas foi mais preciso, mais diverso e mais bonito do que acreditava ser possível”, disse Hannah Wakeford, astrofísica da Universidade de Bristol, no Reino Unido, que investiga atmosferas exoplanetárias.

Ter uma lista tão completa de ingredientes químicos numa atmosfera exoplanetária também dá aos cientistas um vislumbre da abundância de diferentes elementos uns em relação aos outros, tais como os rácios carbono/oxigénio ou potássio/oxigénio.

Isto, por sua vez, proporciona uma visão de como este planeta – e talvez outros – se formou a partir do disco de gás e poeira que rodeava a estrela-mãe nos seus primeiros anos.

O inventário químico de WASP-39 b sugere uma história de colisões e fusões de corpos mais pequenos chamados planetesimais para criar um eventual “Golias” planetário.

“A abundância de enxofre relativamente ao hidrogénio indicou que o planeta presumivelmente sofreu uma grande acreção de planetesimais que podem fornecer estes ingredientes à atmosfera”, disse Kazumasa Ohno, investigador exoplanetário da Universidade da Califórnia, Santa Cruz, que trabalhou nos dados do Webb.

“Os dados também indicam que o oxigénio é muito mais abundante do que o carbono na atmosfera. Isto indica potencialmente que WASP-39 b se formou originalmente muito longe da estrela central”.

Ao revelar com precisão os detalhes de uma atmosfera exoplanetária, os instrumentos do telescópio Webb tiveram um desempenho muito superior às expectativas dos cientistas – e prometem uma nova fase de exploração da grande variedade de exoplanetas na Galáxia.

“Vamos poder ver o grande quadro das atmosferas dos exoplanetas”, disse Laura Flagg, investigadora da Universidade de Cornell e membro da equipa internacional. “É incrivelmente excitante saber que tudo vai ser reescrito. Essa é uma das melhores partes de se ser cientista”.

Astronomia On-line
25 de Novembro de 2022



 

895: Determinada a forma do halo estelar da Via Láctea

CIÊNCIA/ASTRONOMIA/ASTROFÍSICA/VIA LÁCTEA

Impressão de artista do halo estelar inclinado e alongado da Via Láctea.
Crédito: Melissa Weiss/Centro para Astrofísica | Harvard & Smithsonian

Um novo estudo revelou a verdadeira forma da nuvem difusa de estrelas que rodeia o disco da nossa Galáxia. Durante décadas, os astrónomos pensaram que esta nuvem de estrelas – chamada halo estelar – era largamente esférica, como uma bola de praia.

Agora, um novo modelo baseado em observações modernas mostra que o halo estelar é oblongo e inclinado, muito semelhante a uma bola de râguebi.

As descobertas – publicadas este mês na revista The Astronomical Journal – fornecem uma visão sobre uma série de áreas temáticas astrofísicas. Os resultados, por exemplo, lançam luz sobre a história da nossa Galáxia e a evolução galáctica, ao mesmo tempo que fornecem pistas na contínua caça à substância misteriosa conhecida como matéria escura.

“A forma do halo estelar é um parâmetro muito fundamental que acabámos de medir com maior precisão do que era possível antes”, diz o autor principal do estudo Jiwon “Jesse” Han, estudante de doutoramento no Centro para Astrofísica | Harvard & Smithsonian. “Há muitas implicações importantes do halo estelar não ser esférico, mas sim com a forma de uma bola de râguebi ou de um zepelim – é só escolher!”

“Durante décadas, a suposição geral tem sido a de que o halo estelar é mais ou menos esférico e isotrópico, ou o mesmo em todas as direcções”, acrescenta o co-autor do estudo Charlie Conroy, orientador de Han e professor de astronomia na Universidade de Harvard e no Centro para Astrofísica. “Sabemos agora que a imagem dos nossos livros, da nossa Galáxia inserida num volume esférico de estrelas, tem de ser rejeitada”.

O halo estelar da Via Láctea é a porção visível do que é mais amplamente chamado halo galáctico. Este halo galáctico é dominado por matéria escura invisível, cuja presença só é mensurável graças à gravidade que exerce. Cada galáxia tem o seu próprio halo de matéria escura. Estes halos servem como uma espécie de andaime sobre o qual pende a matéria comum e visível.

Por sua vez, essa matéria visível forma estrelas e outras estruturas galácticas. Para melhor compreender como as galáxias se formam e interagem, bem como a natureza subjacente da matéria escura, os halos estelares são alvos astrofísicos valiosos.

“O halo estelar é um rastreador dinâmico do halo galáctico”, diz Han. “A fim de aprender mais sobre os halos galácticos em geral, e especialmente sobre o halo galáctico e a história da nossa própria Galáxia, o halo estelar é um óptimo lugar para começar”.

No entanto, a forma do halo estelar da Via Láctea há muito que desafia os astrónomos, pela simples razão de que estamos embutidos nela. O halo estelar estende-se por várias centenas de milhares de anos-luz acima e abaixo do plano repleto de estrelas da nossa Galáxia, onde o nosso Sistema Solar reside.

“Ao contrário das outras galáxias, onde apenas olhamos para elas e medimos os seus halos”, diz Han, “falta-nos o mesmo tipo de perspectiva aérea, exterior ao halo da nossa própria Galáxia”.

Complicando ainda mais as coisas, o halo estelar provou ser bastante difuso, contendo apenas cerca de um por cento da massa de todas as estrelas da Galáxia.

No entanto, com o tempo, os astrónomos conseguiram identificar muitos milhares de estrelas que povoam este halo, que se distinguem de outras estrelas da Via Láctea devido à sua composição química distinta (medida através de estudos da sua luz estelar), bem como pelas suas distâncias e movimentos através do céu. Através de tais estudos, os astrónomos aperceberam-se que as estrelas do halo não estão uniformemente distribuídas.

Desde então, o objectivo tem sido estudar os padrões de densidade excessiva das estrelas – aparecendo espacialmente como cachos e correntes – para classificar as origens finais do halo estelar.

O novo estudo dos investigadores e colegas do Centro para Astrofísica | Harvard & Smithsonian aproveita dois grandes conjuntos de dados recolhidos nos últimos anos, levantamentos estes que sondaram o halo estelar como nunca antes.

O primeiro conjunto é o do Gaia, uma nave espacial revolucionária lançada pela Agência Espacial Europeia em 2013. O Gaia tem vindo a compilar as medições mais precisas das posições, movimentos e distâncias de milhares de milhões de estrelas na Via Láctea, incluindo algumas estrelas próximas do halo estelar.

O segundo conjunto de dados é do H3 (Hectochelle in the Halo at High Resolution), um levantamento terrestre realizado com o MMT (Multiple Mirror Telescope), localizado no Observatório Fred Lawrence Whipple no estado norte-americano do Arizona, uma colaboração entre o Centro para Astrofísica e a Universidade do Arizona.

O H3 reuniu observações detalhadas de dezenas de milhares de estrelas do halo estelar, demasiado distantes para o Gaia avaliar.

A combinação destes dados num modelo flexível que permitiu que a forma do halo estelar surgisse de todas as observações produziu o halo decididamente não esférico – e a forma de bola de râguebi encaixa bem com outras descobertas até à data. A forma, por exemplo, concorda de forma independente e fortemente com uma teoria de ponta relativa à formação do halo estelar da Via Láctea.

De acordo com este quadro, o halo estelar formou-se quando uma galáxia anã solitária colidiu há 7-10 mil milhões de anos com a nossa muito maior Galáxia.

A galáxia anã é divertidamente conhecida como Gaia-Salsicha-Encélado (GSE), onde “Gaia” se refere à já mencionada nave espacial, “Salsicha” ao padrão que aparece ao traçar os dados do Gaia e “Encélado” é o gigante mitológico grego que foi enterrado debaixo de uma montanha – mais ou menos como a GSE foi enterrada na Via Láctea.

Como consequência deste evento de colisão galáctica, a galáxia anã foi dilacerada e as suas estrelas constituintes espalhadas num halo disperso. Tal história de origem explica a disparidade entre as estrelas do halo estelar e as estrelas nascidas e criadas na Via Láctea.

Os resultados do estudo detalham adicionalmente como a GSE e a Via Láctea interagiram há todos esses éones atrás. A forma de bola de râguebi – tecnicamente chamada elipsoide triaxial – reflecte as observações de dois amontoados de estrelas no halo estelar. Os amontoados formaram-se ostensivamente quando a GSE passou por duas órbitas da Via Láctea.

Durante estas órbitas, a GSE teria abrandado duas vezes no chamado apocentro, o ponto mais afastado da órbita da galáxia anã em torno do maior atractor gravitacional, a grande Via Láctea; estas “pausas” levaram à libertação adicional de estrelas por parte da GSE. Entretanto, a inclinação do halo estelar indica que a GSE se encontrou com a Via Láctea num ângulo incidente e não de frente.

“A inclinação e distribuição de estrelas no halo estelar fornecem uma confirmação dramática de que a nossa Galáxia colidiu com outra galáxia mais pequena há 7-10 mil milhões de anos”, diz Conroy.

Notavelmente, já passou tanto tempo desde a colisão da GSE com a Via Láctea que se esperava que as estrelas do halo estelar se instalassem dinamicamente na clássica forma esférica, há muito assumida.

A equipa diz que o facto de não o terem feito provavelmente tem a ver com o halo galáctico mais amplo. Esta estrutura dominada pela matéria escura está, ela própria, provavelmente inclinada e, através da sua gravidade, está igualmente a manter o halo estelar inclinado.

“O halo estelar inclinado sugere fortemente que o halo de matéria escura também está inclinado”, diz Conroy. “Uma inclinação no halo de matéria escura pode ter ramificações significativas para a nossa capacidade de detectar partículas de matéria escura em laboratórios cá na Terra”.

Este último ponto de Conroy alude às múltiplas experiências de detetores de matéria escura agora em curso e planeadas. Estes detectores podem aumentar as suas hipóteses de capturar uma interacção elusiva com a matéria escura se os astrofísicos puderem julgar onde a substância está mais fortemente concentrada, galacticamente falando.

À medida que a Terra se move pela Via Láctea, vai encontrar periodicamente estas mais densas e velozes regiões de partículas de matéria escura, aumentando as probabilidades de detecção.

A descoberta da configuração mais plausível do halo estelar é o que faz avançar muitas investigações astrofísicas enquanto se preenchem os detalhes básicos sobre o nosso lugar no Universo.

“Estas são perguntas tão intuitivamente interessantes de fazer sobre a nossa Galáxia: ‘Qual é o aspecto da nossa Galáxia?’ e ‘Qual é o aspecto do halo estelar?’,” diz Han. “Com esta linha de investigação e estudo em particular, estamos finalmente a responder a essas perguntas”.

Astronomia On-line
25 de Novembro de 2022



 

894: Aprendizagem de máquina classifica automaticamente 1.000 super-novas

CIÊNCIA/ASTRONOMIA

A posição, no céu, das super-novas classificadas automaticamente pelo SNIascore.
Crédito: Caltech

As instalações astronómicas de hoje varrem o céu nocturno cada vez mais profunda e rapidamente do que nunca. A identificação e classificação de eventos cósmicos conhecidos e potencialmente interessantes está a tornar-se impossível para um ou um grupo de astrónomos.

Portanto, cada vez mais treinam computadores para fazer o trabalho por eles. Os astrónomos da colaboração ZTF (Zwicky Transient Facility) no Caltech anunciaram que o seu algoritmo de aprendizagem de máquina já classificou e relatou 1000 super-novas de forma completamente autónoma.

“Precisávamos de uma ajuda e sabíamos que uma vez que treinássemos os nossos computadores para fazer o trabalho, eles iriam tirar-nos uma grande carga das costas”, diz Christoffer Fremling, astrónomo do Caltech e o cérebro por trás do novo algoritmo, apelidado de SNIascore.

“O SNIascore classificou a sua primeira super-nova em Abril de 2021 e um ano e meio depois estamos a atingir um belo marco de 1000 super-novas sem qualquer envolvimento humano”.

Muitas das questões científicas actuais e mais excitantes que os astrónomos estão a tentar responder exigem que eles recolham grandes amostras de diferentes eventos cósmicos.

Como resultado, os observatórios astronómicos modernos tornaram-se incansáveis máquinas geradoras de dados que lançam dezenas de milhares de alertas e imagens aos astrónomos todas as noites.

Isto é particularmente verdade no campo da astronomia no domínio do tempo, em que os investigadores procuram objectos em rápida mudança, ou transientes, tais como estrelas em explosão ou moribundas conhecidas como super-novas, buracos negros que comem estrelas em órbita, asteróides e muito mais.

“A noção tradicional de um astrónomo sentado no observatório a ‘peneirar’ imagens telescópicas carrega muito romanticismo, mas está a afastar-se da realidade”, diz Matthew Graham, cientista do projecto ZTF do Caltech.

Para além de libertar tempo para os astrónomos perseguirem outras questões científicas, o algoritmo de aprendizagem de máquina é muito mais rápido na classificação de potenciais candidatos a super-nova e a partilhar os resultados com a comunidade astronómica.

Com o SNIascore o processo é encurtado de 2-3 dias para 10 minutos, ou quase em tempo real. Esta identificação precoce de explosões cósmicas é muitas vezes crítica para melhor estudar a sua física.

“O SNIascore situa-se em cima de outros algoritmos de aprendizagem de máquina e camadas subjacentes que desenvolvemos para o ZTF, e demonstra bem como as aplicações de aprendizagem de máquina estão a amadurecer na astronomia quase em tempo real”, diz Ashish Mahabal, cientista computacional do CD3 (Center for Data-Driven Discovery) do Caltech, que lidera as actividades de aprendizagem de máquina para o ZTF.

Por agora, o SNIascore só pode classificar o que é conhecido como super-novas do Tipo Ia, ou as “velas padrão” utilizadas pelos astrónomos para medir o ritmo de expansão do Universo. Estas são estrelas moribundas que explodem numa explosão termonuclear de força consistente.

No entanto, Christoffer e colegas estão a trabalhar arduamente na ampliação das capacidades do algoritmo para classificar outros tipos de super-novas num futuro próximo.

O SNIascore está actualmente adaptado para trabalhar com o espectrógrafo SEDM (Spectral Energy Distribution Machine), alojado numa cúpula a apenas algumas centenas de metros de distância da câmara ZTF no Observatório Palomar.

O ZTF varre continuamente o céu e envia todas as noites centenas de milhares de alertas de potenciais transientes cósmicos a astrónomos de todo o mundo. O espectrógrafo SEDM é accionado para acompanhar e observar os mais promissores.

Produz um espectro do evento cósmico que transporta informação sobre a intensidade das várias frequências da luz captada pela câmara do telescópio. Este espectro é o que pode dizer definitivamente aos astrónomos que tipo de evento está a ser observado.

Utilizando técnicas inteligentes de aprendizagem de máquina, a equipa de Christoffer treinou o SNIascore para ler os espectros de SEDM de forma notável.

“O SNIascore é incrivelmente preciso. Depois de 1000 super-novas, vimos como o algoritmo funciona no ‘mundo real’ e não tivemos uma classificação claramente errada desde o seu lançamento em Abril de 2021. Isto dá-nos a confiança para avançar e implementar o mesmo algoritmo noutras instalações de observação”, acrescentou Fremling.

Ele e colegas estão actualmente a adaptar o SNIascore para trabalhar com o próximo espectrógrafo SEDMv2 montado no telescópio de 2,1 metros no Observatório Kitt Peak no estado norte-americano do Arizona.

O SEDMv2 será a versão avançada do SEDM e permitirá a detecção e classificação de super-novas mais fracas. Actualmente, o SNIascore classifica em média duas super-novas por noite. Com o SEDMv2 este número pode potencialmente duplicar.

As vantagens do SNIascore vão além da construção rápida e fiável de grandes conjuntos de dados de super-novas. Os astrónomos que procuram outros eventos transientes podem agora rapidamente excluir candidatos classificados pelo SNIascore como super-novas, de tal forma que não se desperdiça tempo de telescópio a segui-los quando o alvo são efectivamente outros tipos de explosões cósmicas.

Outros esforços de classificação de eventos transientes também usam aprendizagem de máquina, mas dependem apenas da chamada “curva de luz” do evento ou da quantidade de luz vista pelo telescópio como uma evolução do tempo.

O SNIascore tem a vantagem de ter sido treinado a utilizar informação espectroscópica, a única forma robusta de confirmar a natureza da maioria dos fenómenos transientes. O algoritmo é de código aberto e outros grupos podem adaptá-lo às suas próprias instalações telescópicas.

“A parte mais desafiante na implementação do SNIascore foi o treino do algoritmo. Foi necessário que os humanos verificassem cuidadosamente as imagens e construíssem um impecável conjunto de dados de treino.

Depois de 1.000 super-novas classificadas automaticamente, olhando para trás, penso que valeu inteiramente a pena o esforço”, diz Fremling.

O SNIascore foi desenvolvido como parte do BTS (Bright Transient Survey) do ZTF – actualmente, o maior levantamento de super-novas disponível para a comunidade astronómica. Todo o conjunto de dados BTS tem perto de 7000 super-novas, 90% das quais foram descobertas e classificadas pelo ZTF (10% foram contribuições de outros grupos e instalações).

“A nossa ambição é continuar a fazer crescer o conjunto de dados BTS com a ajuda do SNIascore para, no futuro, construir a mais compreensiva amostra de super-novas que os astrónomos podem utilizar para responder a questões fundamentais da cosmologia, tais como a rapidez com que o Universo se está a expandir e para mapear potencialmente a distribuição de matéria escura e a estrutura em grande escala do Universo”, acrescentou Fremling.

Astronomia On-line
25 de Novembro de 2022



 

893: Meteorito reforça a tese de que a água da Terra veio do Espaço

CIÊNCIA/ESPAÇO/ÁGUA

Um meteorito que caiu na cidade de Winchcombe, no sudeste da Inglaterra, no ano passado, continha água que correspondia quase perfeitamente com a existente na Terra.

Museu de História Natural
Um dos fragmentos recuperados do meteorito Winchcombe.

Isso reforça a ideia de que rochas do Espaço podem ter trazido componentes químicos importantes, incluindo água, para o nosso planeta no início da sua história, há mil milhões de anos. Este meteorito é considerado o mais importante alguma vez recuperado no Reino Unido.

Os cientistas, que acabaram de publicar a primeira análise detalhada, dizem que o objecto rendeu informações fascinantes.

Mais de 500g de detritos escuros foram recolhidos de jardins residenciais, calçadas e campos depois de uma bola de fogo gigante iluminar o céu nocturno de Winchcombe.

Os restos fragmentados foram cuidadosamente catalogados no Museu de História Natural de Londres e depois emprestados a equipas de toda a Europa para serem investigados.

A água representava até 11% do peso do meteorito — e continha uma proporção muito semelhante de átomos de hidrogénio à da água na Terra.

Alguns cientistas dizem que quando a Terra era jovem era tão quente que teria expelido grande parte do seu conteúdo volátil, incluindo água.

O facto de a Terra ter tanta água hoje — 70% da sua superfície é coberta por oceanos — sugere que deve ter havido um acréscimo posterior.

Alguns afirmam que isso pode ser proveniente de um bombardeio de cometas gelados — mas a composição química deles não coincide tanto. Mas os condritos carbonáceos — meteoritos como o de Winchcombe — certamente coincidem. E o facto de ter sido recuperado menos de 12 horas após a queda significa que absorveu muito pouca água terrestre, ou até mesmo quaisquer contaminantes.

“Todos os outros meteoritos foram comprometidos de alguma forma pelo ambiente terrestre”, diz Ashley King, co-autor principal do estudo, do Museu de História Natural de Londres, à BBC News. “Mas o de Winchcombe é diferente por causa da rapidez com que foi recolhido”.

“Isso significa que, quando analisamos (o meteorito), sabemos que a composição que estamos a ver leva-nos de volta à composição no início do Sistema Solar, há 4,6 mil milhões de anos”.

“Fora buscar amostras de rocha de um asteróide com uma nave espacial, não poderíamos ter um espécime mais intocado”.

Trajectória precisa

Os cientistas que examinaram os compostos orgânicos que continham carbono e azoto do meteorito, incluindo os seus aminoácidos, tiveram uma imagem igualmente nítida. É o tipo de química que poderia ter sido matéria-prima para a biologia começar nos primórdios da Terra. A nova análise também confirma a origem do meteorito.

As imagens dos vídeos da bola de fogo permitiram que os investigadores elaborassem uma trajectória muito precisa. Um cálculo retroactivo indica que o meteorito veio da parte externa do cinturão de asteróides entre Marte e Júpiter.

Outros estudos revelam que se desprendeu da parte superior de um asteróide maior possivelmente devido a uma colisão.

De seguida, levou apenas de 200 mil a 300 mil anos para chegar à Terra, conforme revela o número de átomos específicos, como o néon, criados na matéria do meteorito através da irradiação constante de partículas espaciais de alta velocidade, ou raios cósmicos.

“0,2 a 0,3 milhão de anos parece muito tempo — mas, do ponto de vista geológico, é realmente muito rápido”, explica Helena Bates, do Museu de História Natural de Londres.

“Os condritos carbonáceos precisam chegar rapidamente aqui ou não sobrevivem, porque são tão quebradiços, tão frágeis que simplesmente se desintegram”.

“Mais segredos”

A primeira análise dos cientistas, publicada na edição desta semana da revista Science Advances, é apenas uma visão geral das propriedades do meteorito de Winchcombe.

Mais uma dúzia de artigos sobre temas mais específicos devem ser publicados em breve em uma edição da revista Meteoritics & Planetary Science.

E não deve parar por aí.

“Os investigadores vão continuar a estudar este espécime nos próximos anos, desvendando mais segredos sobre as origens do nosso Sistema Solar”, afirmou Luke Daly, co-autor do estudo, da Universidade de Glasgow, na Escócia.

ZAP // BBC
23 Novembro, 2022



 

851: Telescópio Webb revela o nascimento de galáxias, como o Universo se tornou transparente

CIÊNCIA/ASTRONOMIA/JAMES WEBB/UNIVERSO

Duas das galáxias mais distantes vistas até à data podem ser vistas nestas imagens Webb das regiões exteriores do gigantesco enxame de galáxias Abell 2744. As galáxias não estão dentro do enxame, mas muitos milhares de milhões de anos-luz atrás dele.
A galáxia apresentada na imagem no centro superior é extraída da imagem à esquerda. Existiu apenas 450 milhões de anos após o Big Bang.
A galáxia apresentada na imagem no centro inferior é extraída da imagem à direita. Existiu 350 milhões de anos após o Big Bang.
Ambas as galáxias são vistas muito perto do Big Bang que ocorreu há 13,8 mil milhões de anos. Estas galáxias são minúsculas em comparação com a nossa Via Láctea, tendo apenas uma fracção do seu tamanho, mesmo até a galáxia inesperadamente alongada vista na imagem do centro superior.
Crédito: NASA, ESA, CSA, T. Treu (UCLA)

Um estudo liderado pela UCLA (Universidade da Califórnia, Los Angeles), e publicado numa edição especial da revista The Astrophysical Journal, relata que as primeiras galáxias eram bolas de fogo cósmicas que convertiam gás em estrelas a velocidades estonteantes e em toda a sua extensão.

A investigação, baseada em dados do Telescópio Espacial James Webb, é o primeiro estudo sobre a forma e estrutura dessas galáxias. Mostra que não eram nada como as galáxias actuais em que a formação estelar está confinada a pequenas regiões, tais como na direcção da constelação de Orionte na nossa própria Galáxia, a Via Láctea.

“Estamos a ver galáxias formarem novas estrelas a um ritmo electrizante”, disse Tommaso Treu, o autor principal do estudo, professor de física e astronomia da UCLA.

“A incrível resolução do Webb permite-nos estudar estas galáxias com detalhes sem precedentes e vemos toda esta formação estelar a ocorrer dentro das regiões destas galáxias”.

Treu dirige o projecto GLASS-JWST, pertencendo ao programa ERS (Early Release Science) do Webb, cujos primeiros resultados são o tema da edição especial da revista.

Outro estudo conduzido pela UCLA, presente na edição, descobriu que as galáxias que se formaram logo após o Big Bang – em menos de mil milhões de anos – poderiam ter começado a queimar os restos de hidrogénio absorvente de fotões, dando luz a um Universo escuro.

“Até os nossos melhores telescópios tiveram dificuldade em confirmar as distâncias destas galáxias, por isso não sabíamos se tornavam o Universo transparente ou não”, disse Guido Roberts-Borsani, investigador pós-doutorado da UCLA e líder do estudo.

“O Webb está a mostrar-nos que não só consegue fazer o trabalho, como também o faz com uma facilidade surpreendente. Muda completamente o jogo”.

Estas descobertas são duas de muitas descobertas de tirar o fôlego por astrofísicos que estão entre os primeiros a espreitar através de uma janela para o passado, janela esta recentemente aberta pelo Webb.

O Webb é o maior telescópio infravermelho [próximo] no espaço e a sua notável resolução fornece uma visão sem paralelo de objectos tão distantes que a sua luz demora milhares de milhões de anos a chegar à Terra.

Embora estes objectos já tenham envelhecido, só a luz dos seus primeiros momentos teve tempo suficiente para viajar através do Universo e para acabar nos detectores do Webb.

Como resultado, não só o Webb funciona como uma espécie de máquina do tempo – levando os cientistas de volta ao período pouco depois do Big Bang – como as imagens que está a produzir tornaram-se um álbum de família, com instantâneos de galáxias e estrelas infantis.

O GLASS-JWST foi um dos 13 projectos ERS seleccionados em 2017 pela NASA para produzir rapidamente conjuntos de dados acessíveis ao público e para demonstrar e testar as capacidades dos instrumentos do Webb.

O projecto visa compreender como e quando a luz das primeiras galáxias “queimou” através do nevoeiro de hidrogénio deixado para trás pelo Big Bang – um fenómeno e período de tempo chamado Época da Reionização – e como o gás e elementos pesados estão distribuídos dentro e à volta das galáxias ao longo do tempo cósmico.

Treu e Roberts-Borsani usam três dos inovadores instrumentos do Webb, dedicado ao infravermelho próximo, para fazer medições detalhadas de galáxias distantes no Universo primitivo.

A Época da Reionização é um período que continua a ser mal compreendido pelos cientistas. Até agora, os investigadores não tinham os instrumentos infravermelhos extremamente sensíveis necessários para observar galáxias que existiam na altura.

Antes da reionização cósmica, o Universo primitivo permaneceu desprovido de luz porque os fotões ultravioletas das estrelas iniciais eram absorvidos pelos átomos de hidrogénio que saturavam o espaço.

Os cientistas pensam que, algures nos primeiros mil milhões de anos do Universo, a radiação emitida pelas primeiras galáxias e possivelmente pelos primeiros buracos negros fez com que os átomos de hidrogénio perdessem electrões, ou ionizassem, impedindo que os fotões se “colassem” a eles e abrindo um caminho para que os fotões viajassem através do espaço.

À medida que as galáxias começaram a ionizar bolhas cada vez maiores, o Universo tornou-se transparente e a luz pôde viajar livremente, como hoje acontece, permitindo-nos ver uma brilhante copa de estrelas e galáxias todas as noites.

A descoberta de Roberts-Borsani de que as galáxias se formaram mais depressa e mais cedo do que se pensava anteriormente poderá confirmar que foram as culpadas da reionização cósmica.

O estudo também confirma as distâncias de duas das galáxias mais distantes conhecidas, utilizando uma nova técnica que permite aos astrónomos sondar o início da reionização cósmica.

Astronomia On-line
22 de Novembro de 2022



 

Os misteriosos filamentos da Via Láctea têm “primos mais velhos e distantes”

CIÊNCIA/ASTRONOMIA/VIA LÁCTEA/FÍSICA/ASTROFÍSICA

Os filamentos magnéticos em grande escala “derramam” para baixo a partir do jacto de um buraco negro, localizado numa galáxia membro de um distante enxame.
Crédito: Rudnick e colaboradores, 2022

O astrofísico Farhad Zadeh, da Universidade Northwestern, tem tido um grande interesse e fascínio por uma família de filamentos magnéticos em grande escala e altamente organizados, situados no centro da Via Láctea, desde que os descobriu no início da década de 1980.

Agora, quarenta anos depois, Zadeh permanece igualmente fascinado – mas talvez um pouco menos intrigado.

Com uma nova descoberta de filamentos semelhantes, mas situados noutras galáxias, Zadeh e seus colaboradores introduziram, pela primeira vez, duas explicações possíveis para as origens desconhecidas dos filamentos.

Num novo artigo científico, publicado no início deste mês na revista The Astrophysical Journal Letters, Zadeh e os seus co-autores propõem que os filamentos podem resultar de uma interacção entre vento e nuvens em grande escala ou podem surgir de turbulência dentro de um campo magnético fraco.

“Nós já sabemos muito sobre os filamentos no nosso próprio Centro Galáctico, e agora os filamentos nas outras galáxias começam a aparecer como uma nova população de filamentos extra-galácticos”, disse Zadeh. “Os mecanismos físicos subjacentes a ambas as populações de filamentos são semelhantes, apesar dos ambientes serem muito diferentes.

Os objectos fazem parte da mesma família, mas os filamentos fora da Via Láctea são primos mais velhos e distantes – primos mesmo muito distantes (no tempo e no espaço)”.

Perito em radioastronomia, Zadeh é professor de física e astronomia na Faculdade Weinberg de Artes e Ciências da Universidade Northwestern e membro do CIERA (Center for Interdisciplinary Exploration and Research in Astrophysics).

“Algo universal está a acontecer”

Os primeiros filamentos que Zadeh descobriu estendem-se até 150 anos-luz de comprimento, elevando-se perto do buraco negro central da Via Láctea. No início deste ano, Zadeh adicionou mais quase 1000 filamentos à sua colecção de observações.

Nesse lote, os filamentos uni-dimensionais aparecem aos pares e agrupados, muitas vezes empilhados e igualmente espaçados, lado a lado como cordas numa harpa ou de lado como ondulações individuais numa cascata.

Usando observações de radiotelescópios, Zadeh descobriu que os filamentos mistificantes são constituídos por electrões de raios cósmicos que giram ao longo de um campo magnético a uma velocidade próxima da velocidade da luz.

Embora Zadeh esteja a montar o puzzle da sua composição, ainda se perguntava de onde vinham. Quando os astrónomos descobriram uma nova população para lá da nossa própria Galáxia, isso forneceu novas oportunidades para investigar os processos físicos no espaço que rodeia os filamentos.

Os filamentos recentemente descobertos residem dentro de um enxame de galáxias, um emaranhado concentrado de milhares de galáxias localizado a mil milhões de anos-luz da Terra.

Algumas das galáxias dentro do enxame são radio-galáxias activas, que parecem ser terreno fértil para a formação de filamentos magnéticos em grande escala. Quando Zadeh viu pela primeira vez estes filamentos recentemente descobertos, ficou espantado.

“Depois de estudar filamentos no nosso próprio Centro Galáctico durante todos estes anos, fiquei extremamente entusiasmado por ver estas estruturas tremendamente belas”, disse. “Como encontrámos estes filamentos noutras partes do Universo, isso indica que algo universal está a acontecer”.

Gigantes galácticos

Embora a nova população de filamentos pareça semelhante à da nossa Via Láctea, existem algumas diferenças fundamentais. Os filamentos fora da Via Láctea, por exemplo, são muito maiores – entre 100 a 10.000 vezes mais longos. São também muito mais antigos e os seus campos magnéticos são mais fracos.

A maioria deles estão curiosamente “pendurados” – num ângulo de 90º – começando nos jactos de um buraco negro no vasto nada do meio intra-enxame, ou no espaço entre as galáxias do enxame.

Mas a população recentemente descoberta tem a mesma relação comprimento/largura que os filamentos da Via Láctea. E ambas as populações parecem transportar energia através dos mesmos mecanismos. Mais perto do jacto, os electrões dos filamentos são mais energéticos, mas perdem energia à medida que se deslocam mais para baixo no filamento.

Embora o jacto do buraco negro possa fornecer as partículas essenciais necessárias para criar um filamento, algo desconhecido deve estar a acelerar estas partículas ao longo de espantosas distâncias.

“Alguns deles têm tamanhos incríveis, até 200 quiloparsecs”, disse Zadeh. “Isto é cerca de quatro ou cinco vezes o tamanho de toda a nossa Via Láctea. O notável é que os seus electrões permanecem juntos numa escala tão longa.

Se um electrão viajasse à velocidade da luz ao longo do comprimento do filamento, demoraria 700.000 anos. E eles não viajam à velocidade da luz”.

Possibilidades promissoras

No novo artigo científico, Zadeh e colaboradores teorizam que a origem dos filamentos poderá ser uma simples interacção entre o vento galáctico e um obstáculo, tal como uma nuvem. À medida que o vento envolve o obstáculo, cria uma cauda semelhante à de um cometa por trás dele.

“O vento vem do movimento da própria galáxia à medida que gira”, explicou Zadeh. “É como quando se coloca a janela fora de um carro em movimento. Não há vento lá fora, mas sente-se o ar a mover-se.

Quando a galáxia se move, cria vento que pode estar a empurrar através de locais onde as partículas dos raios cósmicos estão bastante soltas. Varre o material e cria uma estrutura filamentar”.

As simulações, contudo, fornecem outra possibilidade viável. Quando os investigadores simularam um meio activo e turbulento, materializaram-se longas estruturas filamentares. À medida que as radio-galáxias se movem, explicou Zadeh, a gravidade pode afectar o meio e agitá-lo.

O meio forma então turbilhões. Após o fraco campo magnético envolver estes turbilhões, pode ser esticado, dobrado e amplificado – eventualmente tornando-se filamentos alongados com um forte campo magnético.

Embora ainda permaneçam muitas questões por responder, Zadeh fica maravilhado com as novas descobertas.

“Todos estes filamentos para lá da nossa Galáxia são muito antigos. São quase de uma época diferente do nosso Universo e no entanto sinalizam aos habitantes da Via Láctea que existe uma origem comum para a formação dos filamentos. Penso que existe uma origem comum para a formação dos filamentos. Penso que isto é notável”, disse o astrofísico Farhad Zadeh.

Astronomia On-line
22 de Novembro de 2022



 

849: Vulcanismo extremo pode ter alterado o clima de Vénus

CIÊNCIA/ASTRONOMIA/VÉNUS

Maat Mons é apresentado nesta perspectiva tridimensional, gerada por computador, da superfície de Vénus. O ponto de vista situa-se a 634 quilómetros para norte de Maat Mons, a uma altitude de 3 quilómetros. Os fluxos de lava estendem-se por centenas de quilómetros através das planícies fracturadas vistas em primeiro plano, até à base de Maat Mons. Os dados de radar de abertura sintética da missão Magellan da NASA foram combinados com altimetria de radar para desenvolver um mapa tridimensional da superfície. A escala vertical nesta perspectiva foi exagerada 10 vezes.
Crédito: NASA/JPL

Um novo artigo científico da NASA sugere que a actividade vulcânica, que durou centenas a milhares de séculos e que libertou quantidades massivas de material, pode ter ajudado a transformar Vénus de um mundo temperado e húmido para a estufa ácida que é hoje.

O artigo também discute estas “grandes províncias ígneas” na história da Terra que causaram várias extinções em massa no nosso próprio planeta há milhões de anos atrás.

“Ao compreender o registo de grandes províncias ígneas na Terra e em Vénus, podemos determinar se estes acontecimentos podem ter causado a actual condição de Vénus”, disse o Dr. Michael J. Way, do GISS (Goddard Institute for Space Studies) da NASA em Nova Iorque. Way é o autor principal do artigo, publicado a 22 de Abril na revista The Planetary Science Journal.

As grandes províncias ígneas são os produtos de períodos de vulcanismo em grande escala que duram dezenas de milhares ou até mesmo centenas de milhares de anos.

Podem depositar cerca de 500.000 quilómetros cúbicos de rocha vulcânica à superfície. No limite superior, poderá significar rocha fundida suficiente para enterrar toda a Península Ibérica a quase um quilómetro de profundidade.

Hoje, Vénus tem temperaturas superficiais que rondam em média os 464º C e uma atmosfera com cerca de 90 vezes a pressão da Terra ao nível do mar. De acordo com o estudo, as enormes erupções vulcânicas podem ter dado início a estas condições infernais algures na história antiga de Vénus.

Em particular, a ocorrência de várias dessas erupções num curto espaço de tempo geológico (um milhão de anos) poderia ter levado a um efeito de estufa que deu início à transição do planeta de húmido e temperado para quente e seco.

Oitenta por cento da superfície total de Vénus está coberta por grandes campos de rocha vulcânica solidificada, disse Way. “Embora ainda não estejamos certo da frequência com que ocorreram os acontecimentos que criaram estes campos, devemos ser capazes de a estimar estudando a própria história da Terra”.

A vida na Terra sofreu pelo menos cinco grandes eventos de extinção em massa desde a origem da vida multicelular há cerca de 540 milhões de anos, cada um dos quais dizimando mais de 50% da vida animal em todo o planeta.

Segundo este estudo e outros anteriores, a maioria destes eventos de extinção foram causados ou exacerbados pelos tipos de erupções que produzem grandes províncias ígneas.

No caso da Terra, as perturbações climáticas provocadas por estes eventos não foram suficientes para causar um efeito de estufa extremo como ocorreu em Vénus, por razões que Way e outros cientistas ainda estão a trabalhar para determinar.

As próximas missões da NASA a Vénus, programadas para o final desta década – a missão DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) e a missão VERITAS (Venus Emissivity, Radio science, InSAR, Topography, And Spectroscopy) – visam estudar a origem, história e estado actual de Vénus em detalhes sem precedentes.

“Um objectivo principal da DAVINCI é melhor determinar a história da água em Vénus e quando esta pode ter desaparecido, fornecendo mais informações sobre como o clima de Vénus mudou ao longo do tempo”, disse Way.

A missão DAVINCI precederá a VERITAS, um orbitador concebido para investigar a superfície e o interior de Vénus, para melhor compreender a sua história vulcânica e volátil e, assim, o percurso de Vénus até ao seu estado actual.

Os dados de ambas as missões podem ajudar os cientistas a melhor determinar o registo exacto de como Vénus pode ter passado de húmido e temperado para seco e escaldante.

Pode também ajudar-nos a compreender melhor como o vulcanismo aqui na Terra afectou a vida no passado e como poderá a continuar a fazê-lo no futuro.

Astronomia On-line
22 de Novembro de 2022



 

848: Vivemos numa simulação? Se sim, já temos um plano para escapar

CIÊNCIA/VIVER EM SIMULAÇÃO/TECNOLOGIA

Caso estejamos a viver numa simulação, um novo artigo oferece algumas alternativas para conseguirmos escapar.

Hersson Piratob / Flickr

Vivemos numa simulação? Esta é uma pergunta que há muito tempo assombra a comunidade científica.

Embora possa parecer algo saído do filme “Matrix”, a questão tem levado cientistas a debruçarem-se sobre o assunto. Não há respostas certas, mas alguns investigadores têm teorias arrojadas.

Em 2019, precisamente no vigésimo aniversário de “Matrix”, Rizwan Virk, cientista do Massachusetts Institute of Technology (MIT), disse numa entrevista que estamos, muito provavelmente, a viver numa simulação.

“Diria que há mais probabilidade de estarmos a viver numa simulação do que o contrário”, afirmou Virk ao Digital Trends. Esta é uma opinião partilhada por outros cientistas e figuras públicas, como Elon Musk.

Um estudo publicado em 2020 mostra que as probabilidades de estarmos a viver numa realidade simulada ou numa realidade base – uma existência que não é simulada – são praticamente as mesmas.

Vamos, por momentos, supor que estamos mesmo a viver numa simulação. Neste caso, o cientista de computação Roman Yampolskiy descreveu como é que seria viver nesta realidade simulada e como poderíamos escapar dela.

Num artigo recentemente pré-publicado no portal ResearchGate, Yampolskiy escreve que o primeiro passo é tentar descobrir em que tipo de simulação estamos.

Citado pela IFLScience, Yampolskiy oferece duas hipóteses: uma simulação parcial, em que um ambiente virtual é simulado e em que agentes não simulados são imersos; e simulação completa, em que tanto o ambiente quanto os agentes são gerados”.

No primeiro cenário, “desencadear um desligamento pode ser suficiente para voltar à realidade básica”. Por sua vez, no segundo cenário, “exigiria uma abordagem mais sofisticada”, explica o cientista.

Um método seria forçar os simuladores a aumentar cada vez mais o poder computacional para simular a nossa realidade.

“Talvez pudéssemos enviar sondas Von Neumann para os cantos mais distantes do Universo, numa tentativa de aumentar deliberadamente o consumo de recursos”, explicou Yampolskiy, “ou poderíamos executar as nossas próprias simulações”.

Ora, se vivêssemos numa simulação parcial, conseguiríamos quebrá-la e ver o que há por trás dela. Mas se vivermos numa simulação total, corremos o risco de pôr um ponto final à nossa existência caso os nosso simuladores simplesmente puxassem o cabo da tomada.

No entanto, Yampolskiy sublinha que estamos no primeiro estágio inicial de pesquisa das possíveis maneiras de escapar. O próximo passo seria investigar mais a estrutura do Universo e principalmente a mecânica quântica.

Basicamente, a Teoria da Simulação sugere que se os humanos continuarem a avançar por centenas, milhares ou mesmo milhões de anos, será bastante seguro afirmar que nós teremos muito poder computacional. Com todo este poder, é provável que os nossos descendentes fiquem curiosos o suficiente para executar “simulações de antepassados”.

Se isso já aconteceu, significaria que a grande maioria das pessoas são simulações dos descendentes avançados da humanidade original e, se for esse o caso, é mais racional supor que você é uma das simulações em vez de um dos humanos biológicos originais.

Desde que Nick Bostrom, da Universidade de Oxford, publicou um artigo sobre o argumento da simulação em 2003, várias personalidades têm lutado com a ideia de a nossa realidade ser um simulacro.

Há quem tenha tentado identificar maneiras através das quais possamos discernir se somos seres simulados ou mesmo calcular a probabilidade de sermos entidades virtuais.

O argumento da simulação de Bostrom baseia-se num trilema, no qual pelo menos uma afirmação deve ser verdadeira: primeiro, os humanos que alcançam um estágio de vida pós-humana é próximo de zero; em segundo lugar, os humanos interessados em executar simulações ancestrais é próximo de zero; e por último, a probabilidade de estarmos todos a viver numa simulação é próxima de um.

Daniel Costa, ZAP //
21 Novembro, 2022



 

811: Os cientistas criaram um buraco negro em laboratório. E funcionou

CIÊNCIA/FÍSICA/BURACOS NEGROS

Os buracos negros são tão densos que, a uma certa distância do centro de massa do buraco negro, nenhuma velocidade no Universo é suficiente para escapar.

NASA
Horizonte de eventos do buraco negro da Via Láctea

Um novo tipo de buraco negro análogo pode ajudar-nos a saber cada vez mais sobre a radiação elusiva. Utilizando uma cadeia de átomos em arquivo único para simular o horizonte de eventos de um buraco negro, uma equipa de físicos observou o equivalente ao que chamamos radiação Hawking — partículas nascidas de perturbações nas flutuações quânticas causadas pela quebra do buraco negro no tempo espacial.

Isto, dizem, poderia ajudar a resolver a tensão entre duas estruturas actualmente irreconciliáveis para descrever o Universo: a teoria geral da relatividade, que descreve o comportamento da gravidade como um campo contínuo conhecido como espaço tempo; e a mecânica quântica, que descreve o comportamento de partículas discretas usando a matemática da probabilidade.

Para uma teoria unificada da gravidade quântica que possa ser aplicada universalmente, estas duas teorias imiscíveis precisam de encontrar uma forma de se entenderem de alguma forma.

É aqui que entram em cena os buracos negros — possivelmente os objectos mais estranhos e mais extremos do Universo. Estes objectos maciços são tão incrivelmente densos que, a uma certa distância do centro de massa do buraco negro, nenhuma velocidade no Universo é suficiente para escapar. Nem sequer a velocidade da luz.

Essa distância, que varia em função da massa do buraco negro, é chamada de horizonte de eventos. Quando um objecto atravessa os seus limites, só podemos imaginar o que acontece, uma vez que nada regressa com informações vitais sobre o seu destino.

Mas em 1974, Stephen Hawking propôs que as interrupções das flutuações quânticas causadas pelo horizonte de eventos resultassem num tipo de radiação muito semelhante à radiação térmica.

Se esta radiação Hawking existe, é demasiado ténue para que ainda não a possamos detectar. É possível que nunca seja peneirada para fora da estática sibilante do Universo. Mas podemos sondar as suas propriedades através da criação de análogos de buracos negros em ambientes de laboratório.

Tal experiência já havia sido feita antes, mas agora uma equipa liderada por Lotte Mertens da Universidade de Amesterdão, na Holanda, fez algo novo num estudo científico. Uma cadeia uni-dimensional de átomos serviu de caminho para os electrões ‘saltarem’ de uma posição para outra.

Ao afinar a facilidade com que este salto pode ocorrer, os físicos poderiam fazer desaparecer certas propriedades, criando efectivamente uma espécie de horizonte de eventos que interferia com a natureza ondulatória dos electrões.

O efeito deste falso horizonte de eventos produziu um aumento de temperatura que correspondeu às expectativas teóricas de um sistema de buraco negro equivalente, disse a equipa, mas apenas quando parte da cadeia se estendeu para além do horizonte de eventos. Isto pode significar que o emaranhado de partículas que se estendem no horizonte do evento é instrumental para gerar radiação Hawking.

A radiação de Hawking simulada foi apenas térmica para uma certa amplitude de lúpulo, e sob simulações que começaram por imitar uma espécie de espaço-tempo considerado ‘plano’. Isto sugere que a radiação Hawking só pode ser térmica dentro de uma gama de situações, e quando há uma mudança na urdidura do espaço-tempo devido à gravidade.

Não é claro o que isto significa para a gravidade quântica, mas o modelo oferece uma forma de estudar a emergência da radiação Hawking num ambiente que não é influenciado pela dinâmica selvagem da formação de um buraco negro. E, por ser tão simples, pode ser posto a funcionar numa vasta gama de cenários experimentais, disseram os investigadores.

“Isto, pode abrir um espaço para explorar aspectos quântico-mecânicos fundamentais ao lado da gravidade e tempos de espaço curvos em vários cenários de matéria condensada”, escrevem os investigadores, citado pela Science Alert.

ZAP //
19 Novembro, 2022